3.560 \(\int \frac{A+B \tan (c+d x)}{\sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=170 \[ -\frac{\left (\frac{1}{4}+\frac{i}{4}\right ) (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac{-B+i A}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{5 B+i A}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}} \]

[Out]

((-1/4 - I/4)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c +
d*x]]*Sqrt[Tan[c + d*x]])/(a^(3/2)*d) + (I*A - B)/(3*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) + (I*A
 + 5*B)/(6*a*d*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.531816, antiderivative size = 170, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {4241, 3595, 3596, 12, 3544, 205} \[ -\frac{\left (\frac{1}{4}+\frac{i}{4}\right ) (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac{-B+i A}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{5 B+i A}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)),x]

[Out]

((-1/4 - I/4)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c +
d*x]]*Sqrt[Tan[c + d*x]])/(a^(3/2)*d) + (I*A - B)/(3*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) + (I*A
 + 5*B)/(6*a*d*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B \tan (c+d x)}{\sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx\\ &=\frac{i A-B}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}-\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\frac{1}{2} a (i A-B)-a (A-2 i B) \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx}{3 a^2}\\ &=\frac{i A-B}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{i A+5 B}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{3 a^2 (i A+B) \sqrt{a+i a \tan (c+d x)}}{4 \sqrt{\tan (c+d x)}} \, dx}{3 a^4}\\ &=\frac{i A-B}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{i A+5 B}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left ((i A+B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{4 a^2}\\ &=\frac{i A-B}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{i A+5 B}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (i (i A+B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{2 d}\\ &=-\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{a^{3/2} d}+\frac{i A-B}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{i A+5 B}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 4.1403, size = 190, normalized size = 1.12 \[ \frac{e^{-2 i (c+d x)} \sqrt{\cot (c+d x)} \csc (c+d x) \sec (c+d x) \left (\left (-1+e^{2 i (c+d x)}\right ) \left (2 A e^{2 i (c+d x)}+A-i B \left (-1+4 e^{2 i (c+d x)}\right )\right )-3 (A-i B) e^{3 i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right )}{12 a d (\cot (c+d x)+i) \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)),x]

[Out]

(((-1 + E^((2*I)*(c + d*x)))*(A + 2*A*E^((2*I)*(c + d*x)) - I*B*(-1 + 4*E^((2*I)*(c + d*x)))) - 3*(A - I*B)*E^
((3*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Sqrt
[Cot[c + d*x]]*Csc[c + d*x]*Sec[c + d*x])/(12*a*d*E^((2*I)*(c + d*x))*(I + Cot[c + d*x])*Sqrt[a + I*a*Tan[c +
d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.582, size = 867, normalized size = 5.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

(-1/12+1/12*I)/d/a^2*(3*I*B*2^(1/2)*cos(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-6
*I*B*2^(1/2)*cos(d*x+c)^2*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-5*I*B*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)+6*A*2^(1/2)*cos(d*x+c)^2*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+3*I*B
*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)+6*I*A*2^(1/2)*cos(d*x+c)*sin(d*x+c)*arc
tan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+5*I*B*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2
)+6*B*2^(1/2)*cos(d*x+c)*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-3*I*A*cos(d*
x+c)*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-3*A*cos(d*x+c)*arctan(
(1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)-A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)^
2+3*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)*sin(d*x+c)-3*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+
c)*sin(d*x+c)-3*B*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)-5*B*((cos(d
*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)^2-3*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)*sin(d*x+c)-3*A*arctan
((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)-I*A*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(
1/2)-3*I*A*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)+A*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)+5*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2))*cos(d*x+c)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(
1/2)/(2*I*cos(d*x+c)*sin(d*x+c)+2*cos(d*x+c)^2-1)/sin(d*x+c)/(cos(d*x+c)/sin(d*x+c))^(1/2)/((cos(d*x+c)-1)/sin
(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.92935, size = 1292, normalized size = 7.6 \begin{align*} -\frac{{\left (3 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{3} d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (\frac{{\left (2 i \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, A - B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) - 3 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{3} d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (\frac{{\left (-2 i \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, A - B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) - \sqrt{2}{\left (2 \,{\left (A - 2 i \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} -{\left (A - 5 i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - A - i \, B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-4 i \, d x - 4 i \, c\right )}}{12 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/12*(3*sqrt(1/2)*a^2*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^3*d^2))*e^(4*I*d*x + 4*I*c)*log((2*I*sqrt(1/2)*a^2*d*
sqrt((I*A^2 + 2*A*B - I*B^2)/(a^3*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) - I*A - B
)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c
))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) - 3*sqrt(1/2)*a^2*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^3*d^2))*e^(4*I*d*x + 4*
I*c)*log((-2*I*sqrt(1/2)*a^2*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^3*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B
)*e^(2*I*d*x + 2*I*c) - I*A - B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*
x + 2*I*c) - 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) - sqrt(2)*(2*(A - 2*I*B)*e^(4*I*d*x + 4*I*c)
 - (A - 5*I*B)*e^(2*I*d*x + 2*I*c) - A - I*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) +
I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c))*e^(-4*I*d*x - 4*I*c)/(a^2*d)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \tan \left (d x + c\right ) + A}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)/((I*a*tan(d*x + c) + a)^(3/2)*sqrt(cot(d*x + c))), x)